4,457 research outputs found

    Vibration Reduction and Performance Enhancement in Rotorcraft Using Active Flaps at High Advance Ratios

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76329/1/AIAA-2006-1861-222.pd

    Bacteria and the Aging and Longevity of Caenorhabditis elegans

    Get PDF
    The molecular genetic analysis of longevity of Caenorhabditis elegans has yielded fundamental insights into evolutionarily conserved pathways and processes governing the physiology of aging. Recent studies suggest that interactions between C. elegans and its microbial environment may influence the aging and longevity of this simple host organism. Experimental evidence supports a role for bacteria in affecting longevity through distinct mechanisms—as a nutrient source, as a potential pathogen that induces double-edged innate immune and stress responses, and as a coevolved sensory stimulus that modulates neuronal signaling pathways regulating longevity. Motivating this review is the anticipation that the molecular genetic dissection of the integrated host immune, stress, and neuroendocrine responses to microbes in C. elegans will uncover basic insights into the cellular and organismal physiology that governs aging and longevity.National Institute of General Medical Sciences (U.S.)Ellison Medical Foundatio

    Discovery of a binary icosahedral quasicrystal in Sc12_12Zn88_88

    Full text link
    We report the discovery of a new binary icosahedral phase in a Sc-Zn alloy obtained through solution-growth, producing millimeter-sized, facetted, single grain, quasicrystals that exhibit different growth morphologies, pentagonal dodecahedra and rhombic triacontahedra, under only marginally different growth conditions. These two morphologies manifest different degrees of quasicrystalline order, or phason strain. The discovery of i-Sc12_12Zn88_88 suggests that a reexamination of binary phase diagrams at compositions close to crystalline approximant structures may reveal other, new binary quasicrystalline phases.Comment: Incorrect spelling in author list resolve

    Capturing Nucleation at 4D Atomic Resolution

    Full text link
    Nucleation plays a critical role in many physical and biological phenomena ranging from crystallization, melting and evaporation to the formation of clouds and the initiation of neurodegenerative diseases. However, nucleation is a challenging process to study in experiments especially in the early stage when several atoms/molecules start to form a new phase from its parent phase. Here, we advance atomic electron tomography to study early stage nucleation at 4D atomic resolution. Using FePt nanoparticles as a model system, we reveal that early stage nuclei are irregularly shaped, each has a core of one to few atoms with the maximum order parameter, and the order parameter gradient points from the core to the boundary of the nucleus. We capture the structure and dynamics of the same nuclei undergoing growth, fluctuation, dissolution, merging and/or division, which are regulated by the order parameter distribution and its gradient. These experimental observations differ from classical nucleation theory (CNT) and to explain them we propose the order parameter gradient (OPG) model. We show the OPG model generalizes CNT and energetically favours diffuse interfaces for small nuclei and sharp interfaces for large nuclei. We further corroborate this model using molecular dynamics simulations of heterogeneous and homogeneous nucleation in liquid-solid phase transitions of Pt. We anticipate that the OPG model is applicable to different nucleation processes and our experimental method opens the door to study the structure and dynamics of materials with 4D atomic resolution.Comment: 42 pages, 5 figures, 12 supplementary figures and one supplementary tabl

    Myokine expression and tumor-suppressive effect of serum following 12 weeks of exercise in prostate cancer patients on ADT

    Get PDF
    Purpose: Although several mechanisms have been proposed for the tumor-suppressive effect of exercise, little attention has been given to myokines, even though skeletal muscle is heavily recruited during exercise resulting in myokine surges. We measured resting serum myokine levels before and after an exercise-based intervention and the effect of this serum on prostate cancer cell growth. Methods: Ten prostate cancer patients undertaking androgen deprivation therapy (age, 73.3 ± 5.6 yr) undertook a 12-wk exercise-based intervention including supervised resistance training, self-directed aerobic exercise, and protein supplementation. Body composition was assessed by dual-energy x-ray absorptiometry and muscle strength by the one-repetition maximum method. Fasting blood was collected at baseline and postintervention, and serum levels of myokines—secreted protein acidic and rich in cysteine, oncostatin M (OSM), decorin, insulin-like growth factor-1, and insulin-like growth factor binding protein-3 (IGFBP-3)—were measured. The growth of the prostate cancer cell line DU145 with baseline and postintervention serum was measured. Results: Body weight (P = 0.011), fat mass (P = 0.012), and percent body fat (P = 0.033) were reduced, whereas percent lean mass (P = 0.001) increased, as did strength (leg press, P = 0.006; chest press, P = 0.020) across the intervention. Serum OSM levels (P = 0.020) and relative serum OSM levels (P = 0.020) increased compared with baseline. A significant reduction in DU145 Cell Index (P = 0.012) and growth rate (P = 0.012) was observed after applying postintervention serum compared with baseline serum. Conclusion: This study provides evidence for enhanced myokine expression and tumor-suppressive effects of serum from chronically exercise-trained prostate cancer patients on androgen deprivation therapy

    Shaken and stirred: conduction and turbulence in clusters of galaxies

    Full text link
    (abridged) Uninhibited radiative cooling in clusters of galaxies would lead to excessive mass accretion rates contrary to observations. One of the key proposals to offset radiative energy losses is thermal conduction from outer, hotter layers of cool core clusters to their centers. However, conduction is sensitive to magnetic field topology. In cool-core clusters the heat buoyancy instability (HBI) leads to B-fields ordered preferentially in the direction perpendicular to that of gravity, which significantly reduces the level of conduction below the classical Spitzer-Braginskii value. However, the cluster cool cores are rarely in perfect hydrostatic equilibrium. Sloshing motions due to minor mergers, galaxy motions or AGN can significantly perturb the gas and affect the level of thermal conduction. We perform 3D AMR MHD simulations of the effect of turbulence on the properties of the anisotropic thermal conduction in cool core clusters. We show that very weak subsonic motions, well within observational constraints, can randomize the magnetic field and significantly boost effective thermal conduction beyond the saturated values expected in the pure unperturbed HBI case. We find that the turbulent motions can essentially restore the conductive heat flow to the cool core to level comparable to the theoretical maximum of 1/3 Spitzer for a highly tangled field. Runs with radiative cooling show that the cooling catastrophe can be averted and the cluster core stabilized. Above a critical Froude number, these same turbulent motions also eliminate the tangential bias in the velocity and magnetic field that is otherwise induced by the trapped g-modes. Our results can be tested with future radio polarization measurements, and have implications for efficient metal dispersal in clusters.Comment: submitted to ApJ, references added, expanded Section

    Multicritical Points of Potts Spin Glasses on the Triangular Lattice

    Full text link
    We predict the locations of several multicritical points of the Potts spin glass model on the triangular lattice. In particular, continuous multicritical lines, which consist of multicritical points, are obtained for two types of two-state Potts (i.e., Ising) spin glasses with two- and three-body interactions on the triangular lattice. These results provide us with numerous examples to further verify the validity of the conjecture, which has succeeded in deriving highly precise locations of multicritical points for several spin glass models. The technique, called the direct triangular duality, a variant of the ordinary duality transformation, directly relates the triangular lattice with its dual triangular lattice in conjunction with the replica method.Comment: 18 pages, 2, figure
    • …
    corecore